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A Class of Linear Functional Equations 

by 

J.K.  Hale 

This r e F r t  is a s-amm-y of some unpublished r e s u l t s  of 

K. Meyer, C. Perel l6  and the  author concerning a c l a s s  of autonomous 

l i nea r  functional equations which includes as  spec ia l  cases autonomous 

l i nea r  funct ional  d i f f e r e n t i a l  equations of retarded and neu t r a l  type 

as wel l  as  funct ional  difference equations. 

Let Rn be a r e a l  o r  complex n-dimensional l i nea r  vector 

space of column vectors with norm I I and l e t  Cr([-ryO],Rn) be 

t h e  Banach space of continuous functions mapping [ - r , O ]  i n t o  Rn wi th  

t he  norm llcpll fo r  cp i n  C defined by llcpll = max (lcp(e>l, 8 i n  

[ - r ,o]) .  If g, f are  continuous l i nea r  mappings of c i n t o  R ~ ,  

then there  ex i s t  n X n matrices p,q whose elements a re  of bounded 

var ia t ion  on [ - r , O ]  such t h a t  

r r r 

I 

fo r  a l l  cp i n  Cr. We s h a l l  suppose t h a t  t he  measure p i s  nonatomic 

a t  0 and more spec i f ica l ly  t h a t  there i s  a continuous nondecreasing 
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function 6( s) ,  0 I s 5 r, such t h a t  6(0) = 0 and 

f o r  a l l  cp i n  Cr.  

For any CP i n  Cr, def ine u(Cp) = (p(0)-g((p). For any con- 

tinuous function h mapping IO,..) i n t o  Rn and any fixed element 

rp i n  Cr, consider t h e  func t iona l  i n t e g r a l  equation 

x ( t )  = rp(t) , -r 5 t 5 0 9 

( 3 )  
t t 

Cy and i s  defined by x (0)  = t where, for  each fixed t L 0, x i s  i n  

= x(t+e) , -r 5 e I 0. 

continuous function sa t i s fy ing  the  above r e l a t ion .  

t 

BY a solut ion of ( 3 ) ,  we w i l l  always mean a 

For g G 0, equation (3) i s  equivalent t o  t h e  func t iona l  

d i f f e r e n t i a l  equation of retarded type 

with t h e  i n i t i a l  condition a t  t = 0 given by Cp. If f 0 and h 0, 

equation (3) i s  a func t iona l  difference equation of retarded type and, 
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i n  par t icu lar ,  includes difference equations. For both f and g not 

i den t i ca l ly  zero, equation (3) corresponds t o  a retarded equation of 

neu t r a l  type. I n  fac t ,  formal d i f fe ren t ia t ion  of t h e  equation yields  

where k i s  defined a s  5 ( e )  = %(t+6),  -r 6 8 S 0. A l s o ,  i f  one 

begins w i t h  ( 5 )  and defines a solution with i n i t i a l  function Cp at  0 

t o  be a continuous function sat isfying ( 5 )  almost everywhere, then an 

. in tegrat ion yields  ( 3 )  w i t h  

t t 

r(p) = Cp(0)-g((p). 

This l a t t e r  remark i s  precisely t h e  reason f o r  considering 

the  equation ( 3 )  ra ther  than ( 5 ) .  If one attempts t o  discuss  equation 

( 5 )  di rec t ly ,  then t h e  f i r s t  problem t h a t  i s  encountered i s  a precise  

de f in i t i on  of a solut ion and a precise de f in i t i on  of the  topology t o  

be induced on the  space i n  which the solut ion w i l l  l i e .  Such a topology 

w i l l  necessar i ly  include the  f i r s t  der iva t ive  of  

whereas, i f  we consider equation ( 3 ) ,  t h e  simpler space 

employed. 

x i n  some way; 

Cr can be 

If h i n  (3)  i s  iden t i ca l ly  zero, we w i l l  say equation ( 3 )  

i s  homogeneous and, otherwise, it is nonhomogeneous. 

THEOREM 1. For any given cp i n  Cr, t he re  i s  a unique function x(Q) 

defined and continuous on [-r,-) such t h a t  x(q) s a t i s f i e s  ( 3 )  on 
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[O,m). Furthermore, t he re  i s  a constant I3 > 0 such t h a t  

T h i s  theorem i s  proved by using t h e  nonatomic property of 

p a t  0 together with t h e  contraction mapping pr inc ip le  t o  f i r s t  

show t h a t  ( 3 )  has a solut ion on a small i n t e r v a l  t o  t h e  r i g h t  of 

t = 0. 

then allows one t o  obtain t h e  estimate (6) f o r  

An appl icat ion of a r e s u l t  on t h e  continuation of t h e  solut ion 

t 2 0. 

I f  h i s  iden t i ca l ly  zero and x = x(cp) i s  a solut ion of 

t h e  homogeneous equation 

x = c p  
0 

(7) 

then it follows from the  uniqueness of t h e  solut ion t h a t  

continuous l i nea r  mapping of 

and xt(cp) s a t i s f i e s  t h e  semigroup property. I f  we define t h e  l i nea r  

operator T( t) by 

xt(cp) i s  a 

i n t o  Cr f o r  each fixed t B 0, ‘r 
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then we can prove 

TEIEOREX 2. The family of l i nea r  operators [ T ( t ) ,  t 2 0) mapping Cr 

i n t o  Cr i s  a strongly continuous semigroup on [O,m) with T(0) = I. 

If, i n  addition the  function 6( s) i n  (2)  s a t i s f i e s  lims q s y s  = 0, 

then t h e  inf in i tes imal  generator A of T ( t )  i s  given by 

and t h e  domain of A, g ( A )  

a continuous f i r s t  der iva t ive  and i ( 0 )  = g(@)  + f(rp). 

consis ts  of a l l  functions Cp i n  Cr with 

It i s  in t e re s t ing  t o  note t h a t  i f  Cp i s  i n  g (A) ,  then T ( t ) p  

i s  ac tua l ly  a continuously d i f fe ren t iab le  solut ion of the  funct ional  

d i f f e r e n t i a l  equation ( 5 )  w i t h  h = 0. 

It i s  easy t o  show t h a t  the spectrum of A, a(A), cons is t s  of 

only point spectrum and t h a t  h i s  i n  a(A) i f  and only i f  h s a t i s f i e s  

t he  cha rac t e r i s t i c  equation 

hB 0 A8 0 

(9) de t  ah) = 0 , A(A)  = AI - I Ae dp(6) - I e dV(6) . 
-r -r 

Also, because A i s  a closed operator and a root h of (8) has f i n i t e  

mult ipl ic i ty ,  one can show t h a t  t he  resolvent operator (A-AI) has 

0 
-1 
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b 

a pole of f i n i t e  order a t  lo 
and, thus, t h e  generalized eigenspace of 

has f i n i t e  dimension. If R(A) and -@(A) denote, respectively, 
IO 

t he  n u l l  space and range of an operator A and the  generalized eigen- 

space of  

space 

Q 'Ef g ( A - h .  I)k each of which i s  invariant under both A and T ( t ) ,  

t Z 0. When Cr i s  decomposed i n  t h i s  way, we s h a l l  say Cr i s  

decomposed by Xo as C = P B, Q and wri te  any element cp i n  

as  cp = cp + rpQ , cpp i n  P, cpQ i n  Q. 

then there  i s  a matric B such t h a t  AO = OB and, thus, @ ( e )  = O(0)e , 

k i s  given by %(A-h.,I) , then it can be shown t h a t  t h e  
xO 

d ef k i s  decomposed as  a d i r ec t  sum of the  subspaces P = %(A-XoI)  , 'r 

0 

'r r 
P If O i s  a bas i s  f o r  P, 

Be 

, - r 6 8 5 0 ,  -r 5 8 5 0. Also, one eas i ly  shows t h a t  T( t )QP(B)  = O(0)e B( t+e)  

which implies t h a t  t h e  solutions of (3) on t h e  generalized eigenspace 

of a solution of (9) can be defined on 

t h e  semigroup T ( t )  

ordinary d i f f e r e n t i a l  equation. 

t h e  same r o l e  as t h e  Jordan canonical form i n  ordinary d i f f e r e n t i a l  

equations. 

(-w,m) and t h a t  t h e  act ion of 

on t h i s  subspace i s  e s sen t i a l ly  the  same as an 

The decomposition outlined here plays 

I n  t h e  applications,  it i s  necessary t o  have an exp l i c i t  

representation for t he  project ion operator E associated with the  

above decomposition. This can be obtained from t h e  formula 
A 0  

I E cp = - ./ (A-XI)-+pdh. 
hO *= c 

where c i s  a c i r c l e  i n  t h e  complex plane which contains no point i n  
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a ( A )  except )Lo. As i n  the  case of retarded funct ional  d i f f e r e n t i a l  

equations ( see  [l] o r  [ 2 ] )  t h e  projection operator EA can a l so  be 

obtained i n  the following way. Rnl be the  n-dimensional r e a l  or  
0 

Let 

complex space of row vectors and define t h e  operator 

B ( A * )  C C([O,r],R n ) given by a l l  $ i n  C([O,r],Rn) which a re  con- 

A* w i t h  

0 0 

-r -r 
tzcuzusl;. differentizble w i t h  +(n) = +(-qaU(e) - J + q a q ( e )  a d  

f o r  $ i n  g ( A * ) ,  

For Jr i n  g ( A * ) ,  cp i n  g ( A ) ,  if follows t h a t  ( $ , A s p )  = (AV,cp). To  

obtain the  project ion operator 

0 = ((pl, ...cp ) be a bas is  f o r  t h e  generalized eigenspace P = %(A-XoI) k 

of Xo and l e t  Y = col(Jrl, ...,$ ) be a bas i s  f o r  

EA cp = 0(Y,cp) f o r  a l l  cp i n  C([-r,O],Rn). 

EA, one proceeds as  follows: i f  we l e t  
0 

P 
%(A*-XoI)k, then 

P 

0 

Another important re la t ion  i n  ordinary d i f f e r e n t i a l  equations 

i s  t h e  var ia t ion  of constants formula. By using t h e  f a c t  t he  solut ion 
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x*(t,h) of (3) w i t h  cp = 0 i s  a continuous l i n e a r  mapping of 

C ( [ O , t ] , R n )  i n t o  Rn and t h e  Reisz representation theorem, it 

follows t h a t  

where W ( t , t )  = 0, W ( t , s )  i s  of bounded va r i a t ion  i n  s f o r  s i n  

[ O , t ]  and W(t,s) i s  continuous from t h e  r i g h t  i n  s f o r  s i n  

( 0 , t ) .  One can a l so  show t h a t  W ( t , s )  i s  continuous from t h e  r i g h t  

a t  s = 0, W( t, s )  = W ( t - s , O )  and - W ( t , O )  i s  t h e  matrix solut ion 

of (3) with Cp = 0 and f equal t o  t h e  i d e n t i t y  matrix. Because 

equation (3) i s  l inear ,  it follows t h a t  t h e  solut ion x = x(cp) s a t i s f i e s  

where we have defined V ( t )  = W ( t , O ) .  Using t h e  f a c t  t h a t  V ( t )  = 0 

f o r  -r 6 t 5 0, we a l so  obtain 

which can be wr i t ten  more compactly as 
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Equation (10) i s  called the  var ia t ion o f  constants formula f o r  (3). 

If xo i s  a solution of (8) and C i s  decomposed by A. 

- 

as P %3 Q, then it can a l so  be shown t h a t  

I f  

i s  equivalent t o  (4)  and the  var ia t ion of constants formula (ID) can 

be wr i t ten  as 

g i s  iden t i ca l ly  zero i n  ( 3 ) ,  then we have seen t h a t  equation ( 3 )  

x -  t -  

t 
T(t)cp + 1 T(t-s)Kof(s)ds 

0 

where T ( t ) K o  i s  t h e  so .ution of (4)  with i n i t i a l  value a t  0 given 

by Ko(e) = 0 f o r  -r I 8 < 0, K (0) = I, t h e  iden t i ty  matrix. T h i s  

i s  t h e  standard manner of wri t ing t h e  var ia t ion  of constants formula 

fo r  (4) as given i n  [ 3 ]  and 1.41. 

i.e., f ,g  not i den t i ca l ly  zero, t h i s  formula a l so  coincides with t h e  

one given f o r  some spec ia l  cases i n  [ 3 ] .  

0 

For t h e  equation of neu t r a l  type; 

To apply these  r e s u l t s  i n  spec ia l  applications, it i s  necessary 

Q t o  obtain precise  estimates of T(t)cpQ and Vt. We are  i n  t h e  process 

of obtaining these estimates by using the  general  representat ion theorems 
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fo r  a semigroup i n  terms of t h e  inverse Laplace transform of t h e  

resolvent of t h e  in f in i t e s ima l  generator. 

prove tha t  

An eas ie r  way would be t o  

a ( T ( t ) )  = e + ( 0 )  , 

a f ac t  which seems t o  be t r u e  f o r  t h e  pa r t i cu la r  A given above. 
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